Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Clinical and Experimental Vaccine Research ; : 124-131, 2019.
Article in English | WPRIM | ID: wpr-763368

ABSTRACT

PURPOSE: Canine influenza virus (CIV), H3N2, carries potentiality for zoonotic transmission and genetic assortment which raises a concern on possible epidemics, and human threats in future. To manage possible threats, the development of rapid and effective methods of CIV vaccine production is required. The plant provides economical, safe, and robust production platform. We investigated whether hemagglutinin (HA) antigen from Korea-originated CIV could be produced in Nicotiana benthamiana and lettuce, Lactuca sativa by a DNA viral vector system. MATERIALS AND METHODS: We used DNA sequences of the HA gene from Korean CIV strain influenza A/canine/Korea/S3001/2015 (H3N2) for cloning into a geminiviral expression vectors to express recombinant HA (rHA) antigen in the plant. Agrobacterium-mediated infiltration was performed to introduce HA-carrying vector into host plants cells. Laboratory-grown N. benthamiana, and grocery-purchased or hydroponically-grown lettuce plant leaves were used as host plants. RESULTS: CIV rHA antigen was successfully expressed in host plant species both N. benthamiana and L. sativa by geminiviral vector. Both complex-glycosylated and basal-glycosylated form of rHA were produced in lettuce, depending on presence of endoplasmic reticulum (ER) retention signal. In terms of rHA expression level, canine HA (H3N2) showed preference to the native signal peptide than ER retention signal peptide in the tested geminiviral vector system. CONCLUSION: Grocery-purchased lettuce leaves could serve as an instant host system for the transient expression of influenza antigen at the time of emergency. The geminiviral vector was able to induce expression of complex-glycosylated and basal-glycosylated rHA in lettuce and tobacco.


Subject(s)
Humans , Base Sequence , Clone Cells , Cloning, Organism , DNA , Emergencies , Endoplasmic Reticulum , Hemagglutinins , Influenza, Human , Lettuce , Orthomyxoviridae , Plant Leaves , Plants , Protein Sorting Signals , Tobacco
2.
Clinical and Experimental Vaccine Research ; : 136-139, 2019.
Article in English | WPRIM | ID: wpr-763366

ABSTRACT

Vaccination is one of the most successful strategies to prevent diseases caused by pathogens. Although various expression systems including Escherichia coli, yeast, insect, and mammalian cells are currently used for producing many of vaccines, these conventional platforms have the limitation of post-translational modification, high cost, and expensive scalability. In this respect, the plant-based expression system has been considered as an attractive platform to produce recombinant vaccines due to fast, cost-effective and scalable production as well as safety. This review discusses the development of plant-derived vaccines and the current stage of plant-based expression system.


Subject(s)
Humans , Antibodies , Efficiency , Escherichia coli , Insecta , Plants , Plants, Genetically Modified , Protein Processing, Post-Translational , Vaccination , Vaccines , Vaccines, Synthetic , Yeasts
SELECTION OF CITATIONS
SEARCH DETAIL